
Math 31 – Final Exam Solutions
Due August 26, 2013 at 5:00 pm

Name:

Instructions: You may use your textbook (Saracino), the reserve text (Gallian), your
notes from class (including the online lecture notes), and your old homework assignments.
All other written materials are forbidden, as are any other electronic materials. You may
not discuss the exam with anyone, and I will not give any assistance in solving the problems.
You may ask me to clarify questions if necessary.

For any question labeled “show” or “prove,” you should write a formal proof, using complete
sentences and proper English.

Please hand this sheet in with your solutions. The exam is due on Monday, August 26
at 5:00 pm.

Honor statement:

I have neither given nor received any help
on this exam, and I have not discussed the
exam with anyone. I attest that all of the
answers are my own work.
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1. [12 points] For each of the following statements, either give an example which has the
given property, or explain why no such example exists. You should give justification in either
case, but a formal proof is not necessary.

(a) [3 points] Two abelian groups H and K such that G = H ×K is nonabelian.

Solution. There is no example—the direct product of two abelian groups is always
abelian. (You proved this on Homework 6, #7.)

(b) [3 points] A nonabelian group G and a normal subgroup N E G such that N and G/N
are both cyclic groups.

Solution. The simplest example is D3, but any dihedral group Dn would work. The
rotation subgroup R is cyclic, and Dn/R has two elements, so it is cyclic as well.

(c) [3 points] An integral domain R and an ideal I ⊆ R such that R/I contains zero
divisors.

Solution. Let R = Z and let I = 6Z. Then Z/6Z contains zero divisors (for example,
2 and 3). You could also take any composite integer n in place of 6 here.

(d) [3 points] A ring R and a ring homomorphism ϕ : Q→ R such that kerϕ = Z.

Solution. This is impossible. We know that the kernel of any ring homomorphism must
be an ideal, but Z is not an ideal in Q. (In fact, any ring homomorphism ϕ : Q → R
is either identically 0 or injective, since the only ideals of Q are {0} and Q.)

2. [8 points] Classify, up to isomorphism, all abelian groups of order 720.

Solution. Note that 720 = 24 · 32 · 5, so there are 10 possible abelian groups of order 720:
the abelian groups of order 24 are

Z2 × Z2 × Z2 × Z2

Z2 × Z2 × Z4

Z2 × Z8

Z4 × Z4

Z16,

and the abelian groups of order 32 are just

Z3 × Z3 and Z9.
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Therefore, the abelian groups of order 720 are:

Z2 × Z2 × Z2 × Z2 × Z3 × Z3 × Z5

Z2 × Z2 × Z2 × Z2 × Z9 × Z5

Z2 × Z2 × Z4 × Z3 × Z3 × Z5

Z2 × Z2 × Z4 × Z9 × Z5

Z2 × Z8 × Z3 × Z3 × Z5

Z2 × Z8 × Z9 × Z5

Z4 × Z4 × Z3 × Z3 × Z5

Z4 × Z4 × Z9 × Z5

Z16 × Z3 × Z3 × Z5

Z16 × Z9 × Z5

3. [8 points] Let G be a group, and let H be a subgroup of G with [G : H] = 2. Prove that
a2 ∈ H for all a ∈ G.

Proof. Let a ∈ G. If a ∈ H, then we are done: H is a subgroup ofG, so a2 ∈ H automatically.
On the other hand, suppose that a ∈ G−H. Then a−1 ∈ G−H as well: if a−1 belonged to
H, then (a−1)−1 = a ∈ H as well, since H is a subgroup. Since H has only two cosets, this
means that Ha = Ha−1. But this can occur only if

a(a−1)−1 ∈ H,

which means that a2 ∈ H.

4. [16 points] Let τ ∈ Sn, and write τ as a product of disjoint cycles (including 1-cycles):

τ = τ1τ2 · · · τm.

Let ki be the length of τi for 1 ≤ i ≤ m, and order the cycles so that k1 ≤ k2 ≤ · · · ≤ km.
The m-tuple (k1, k2, . . . , km) is called the cycle type of τ . For example, the permutation

(1 3)(2 5 6)(7 8) = (4)(1 3)(7 8)(2 5 6)

in S8 has cycle type (1, 2, 2, 3).

(a) [8 points] Let (x1 x2 · · · xk) be a k-cycle in Sn. Prove that for any σ ∈ Sn,

σ(x1 x2 · · · xk)σ−1 = (σ(x1) σ(x2) · · · σ(xk)).
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Proof. Let σ ∈ Sn, and let τ = (x1 x2 · · · xk). Then for any x ∈ {1, 2, . . . , n}, we have

στσ−1(x) = σ(τ(σ−1(x))).

If σ−1(x) 6∈ {x1, x2, . . . , xk} (which is the same as saying that x 6∈ {σ(x1), σ(x2), . . . , σ(xk)}),
then τ fixes σ−1(x), and we have

στσ−1(x) = σσ−1(x) = x.

Therefore, we need only consider x ∈ {σ(x1), σ(x2), . . . , σ(xk)}. Then we have

στσ−1(σ(x1)) = στ(x1) = σ(x2)

στσ−1(σ(x2)) = στ(x2) = σ(x3)

...

στσ−1(σ(xk−1) = στ(xk−1) = σ(xk)

στσ−1(σ(xk) = στ(xk) = σ(x1).

Therefore, we see that

στσ−1 = (σ(x1) σ(x2) · · · σ(xk)),

as desired.

(b) [8 points] Prove that for any σ ∈ Sn, στσ−1 has the same cycle type as τ .

Proof. Fix τ ∈ Sn, and suppose that τ has cycle type (k1, k2, . . . , km). That is, τ can
be written in the form

τ = τ1τ2 · · · τm,

where the τi are disjoint cycles and τi has length ki. Then for any σ ∈ Sn, we have

στσ−1 = σ(τ1τ2 · · · τm)σ−1

= στ1σ
−1στ2σ

−1σ · · · σ−1στmσ
−1

= (στ1σ
−1)(στ2σ

−1) · · · (στmσ−1).

Since each τi is a ki-cycle, we know from part (a) that σi = στiσ
−1 is also a ki-cycle.

It’s also not hard to see that the σi must be disjoint, since the τi are. Therefore, στσ−1

has cycle type (k1, k2, . . . , km), which is the same as that of τ .
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5. [14 points] Let G be an abelian group. Define

Tor(G) =
{
a ∈ G : am = e for some m ∈ Z+

}
.

(Note that the integer m depends on a.) Equivalently, Tor(G) consists of all elements of G
which have finite order. Then Tor(G) is a subgroup of G, called the torsion subgroup.

(a) [10 points] Show that the quotient group G/Tor(G) contains no elements of finite order
except for the identity element.

Proof. Let H = Tor(G), and suppose that Ha has finite order in G/H. That is,

(Ha)m = He

for some m ∈ Z. That is, Ham = He, which means that am ∈ H. But H is the torsion
subgroup, so am has finite order, say n. Then

(am)n = amn = e,

so a has finite order. Therefore, a was in H = Tor(G) to begin with, so Ha = He.
Therefore, the only element of finite order in G/Tor(G) is the coset He, which is simply
the identity element.

(b) [4 points] Let G = Z× Z5. Find Tor(G), and verify that G/Tor(G) ∼= Z.

Proof. A pair (a, b) ∈ G belongs to Tor(G) if there is an integer m such that

m · (a, b) = (m · a,m · b) = (0, 0).

This means that m · a = 0 and m · b = 0. The only element of Z with finite order is 0,
so we need a = 0. Now if a = 0 and b ∈ Z5 is any element of Z5, then we can find an
m such that m · (a, b) = 0. (Just take m = o(b).) Therefore,

Tor(G) = {(0, b) ∈ G : b ∈ Z5} ∼= Z5.

Now define ϕ : G → Z by ϕ(a, b) = a. Then it is easy to see that kerϕ = Tor(G), so
the Fundamental Homomorphism Theorem guarantees that G/Tor(G) ∼= Z.
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6. [16 points] Let G be a group, and define

D = {(a, a) ∈ G×G : a ∈ G} .

In general, D is a subgroup of G×G and D ∼= G. (You may assume these facts throughout
this problem.)

(a) [6 points] Prove that D is a normal subgroup of G×G if and only if G is abelian.

Proof. Suppose first that G is abelian. Then we have seen before that G × G is also
abelian, and that any subgroup of an abelian group is normal, so D is normal in G×G.

On the other hand, suppose that D is normal in G×G. Then given a, b ∈ G, we have

(b, e)(a, a)(b, e)−1 = (bab−1, a) ∈ D.

This means that bab−1 = a, or ba = ab. Since a, b ∈ G are arbitrary, it follows that G
is abelian.

(b) [10 points] Suppose that G is abelian. Prove that (G×G)/D ∼= G.

Proof. We will invoke the Fundamental Homomorphism Theorem. Therefore, we need
an epimorphism ϕ : G×G→ G such that kerϕ = D. We’ll define ϕ by

ϕ(a, b) = ab−1.

To see that this is a homomorphism, let (a, b), (c, d) ∈ G×G. Then (since G is abelian),

ϕ((a, b)(c, d)) = ϕ(ac, bd) = ac(bd)−1 = acd−1b−1 = (ab−1)(cd−1) = ϕ(a, b)ϕ(c, d).

Furthermore, ϕ is onto: given a ∈ G, observe that

ϕ(a, e) = ae−1 = a.

Finally, we check that kerϕ = D. If (a, a) ∈ D, then we certainly have

ϕ(a, a) = aa−1 = e,

so (a, a) ∈ kerϕ. On the other hand, if ϕ(a, b) = e, then ab−1 = e, so a = b. Therefore,
(a, b) ∈ D, and kerϕ = D. The Fundamental Homomorphism Theorem then implies
that

(G×G)/D = (G×G)/ kerϕ ∼= G.
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7. [16 points] Let R = M2(R), the ring of all 2-by-2 matrices with real coefficients.

(a) [8 points] Define a subset S ⊆ R by

S =

{(
a b
−b a

)
: a, b ∈ R

}
.

Verify that S is a subring of R, and that S× = S − {0}.

Proof. We need to check that S is a subgroup of R under addition, and that it is closed
under multiplication. Observe that(

a b
−b a

)
+

(
c d
−d c

)
=

(
a+ c b+ d
−b− d a+ c

)
=

(
a+ c b+ d

−(b+ d) a+ c

)
so S is closed under addition. Similarly,(

a b
−b a

)(
c d
−d c

)
=

(
ac− bd ad+ bc
−bc− ad −bd+ ac

)
=

(
ac− bd ad+ bc

−(ad+ bc) ac− bd

)
so S is closed under multiplication. The zero matrix clearly belongs to S, and S is
closed under additive inverses:

−
(

a b
−b a

)
=

(
−a −b
b −a

)
∈ S.

Therefore, S is a subring of R. To compute S×, we need to determine which elements
of S have multiplicative inverses. The elements of S are matrices, so we can deter-
mine which matrices are invertible by considering the determinant. Given a matrix(

a b
−b a

)
in S, we have

det

(
a b
−b a

)
= a2 + b2,

which equals 0 if and only if a = 0 and b = 0. Therefore, if A ∈ S, detA = 0 if and
only if A = 0, and it follows that S× = S − {0}.

(b) [8 points] Define ϕ : C→ M2(R) by

ϕ(a+ bi) =

(
a b
−b a

)
.

Prove that ϕ is a ring isomorphism of C onto the subring S defined in part (a).
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Proof. We first check that ϕ is a ring homomorphism. Given two complex numbers
a+ bi and c+ di, we have

ϕ((a+ bi) + (c+ di)) = ϕ((a+ c) + (b+ d)i) =

(
a+ c b+ d

−(b+ d) a+ c

)
while

ϕ(a+ bi) + ϕ(c+ di) =

(
a b
−b a

)
+

(
c d
−d c

)
=

(
a+ c b+ d

−(b+ d) a+ c

)
.

Therefore, ϕ preserves addition. Similarly,

ϕ((a+ bi)(c+ di)) = ϕ((ac− bd) + (ad+ bc)i) =

(
ac− bd ad+ bc

−(ad+ bc) ac− bd

)
,

while

ϕ(a+ bi)ϕ(c+ di) =

(
a b
−b a

)(
c d
−d c

)
=

(
ac− bd ad+ bc

−(ad+ bc) ac− bd

)
.

Therefore, ϕ is a ring homomorphism. It is easy to see that ϕ is onto, and it is one-
to-one since ϕ(a + bi) = 0 implies that a = 0 and b = 0. Thus kerϕ = {0}, and ϕ is
an isomorphism.

8. [10 points] Let R be a commutative ring, and fix a ∈ R. Define the annihilator of a to
be the set

Ann(a) = {x ∈ R : xa = 0} .
(a) [8 points] Prove that Ann(a) is an ideal of R.

Proof. We need to check that Ann(a) is an additive subgroup of R and that it “absorbs”
elements of R under multiplication. Suppose that x, y ∈ Ann(a). Then the distributive
law implies

(x+ y)a = xa+ ya = 0 + 0 = 0,

so x + y ∈ Ann(a), and the annihilator is closed under addition. Also, 0 · a = 0, so
0 ∈ Ann(a). Finally, if x ∈ Ann(a), then

(−x)a = −(xa) = −0 = 0,

so −x ∈ Ann(a) as well. Therefore, Ann(a) is a subgroup of R under addition.

Now let x ∈ Ann(a), and let r ∈ R. Then the associativity of multiplication implies
that

(rx)a = r(xa) = r · 0 = 0.

Since R is commutative, we also have

(xr)a = (rx)a = 0,

so rx, xr ∈ Ann(a). Therefore, Ann(a) is an ideal of R.
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(b) [2 points] Find the annihilator of 8 in Z12.

Proof. We are looking for elements x ∈ Z12 with the property that x ·12 8 = 0. This
amounts to finding integers x such that x · 8 is a multiple of 12. Certainly 0 works,
and the others are 3, 6, and 9. Therefore,

Ann(a) = {0, 3, 6, 9}.

Note that this is just the cyclic subgroup 〈3〉 generated by 3 in Z12. (It is also the
principal ideal (3) generated by 3.)
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